8,061 research outputs found

    On the Ricci tensor in type II B string theory

    Full text link
    Let \nabla be a metric connection with totally skew-symmetric torsion \T on a Riemannian manifold. Given a spinor field Ψ\Psi and a dilaton function Φ\Phi, the basic equations in type II B string theory are \bdm \nabla \Psi = 0, \quad \delta(\T) = a \cdot \big(d \Phi \haken \T \big), \quad \T \cdot \Psi = b \cdot d \Phi \cdot \Psi + \mu \cdot \Psi . \edm We derive some relations between the length ||\T||^2 of the torsion form, the scalar curvature of \nabla, the dilaton function Φ\Phi and the parameters a,b,μa,b,\mu. The main results deal with the divergence of the Ricci tensor \Ric^{\nabla} of the connection. In particular, if the supersymmetry Ψ\Psi is non-trivial and if the conditions \bdm (d \Phi \haken \T) \haken \T = 0, \quad \delta^{\nabla}(d \T) \cdot \Psi = 0 \edm hold, then the energy-momentum tensor is divergence-free. We show that the latter condition is satisfied in many examples constructed out of special geometries. A special case is a=ba = b. Then the divergence of the energy-momentum tensor vanishes if and only if one condition \delta^{\nabla}(d \T) \cdot \Psi = 0 holds. Strong models (d \T = 0) have this property, but there are examples with \delta^{\nabla}(d \T) \neq 0 and \delta^{\nabla}(d \T) \cdot \Psi = 0.Comment: 9 pages, Latex2

    A first-principles DFT+GW study of spin-filter and spin-gapless semiconducting Heusler compounds

    Full text link
    Among Heusler compounds, the ones being magnetic semiconductors (also known as spin-filter materials) are widely studied as they offer novel functionalities in spintronic/magnetoelectronic devices. The spin-gapless semiconductors are a special case. They possess a zero or almost-zero energy gap in one of the two spin channels. We employ the GWGW approximation, which allows an elaborate treatment of the electronic correlations, to simulate the electronic band structure of these materials. Our results suggest that in most cases the use of GWGW self energy instead of the usual density functionals is important to accurately determine the electronic properties of magnetic semiconductors.Comment: Final version as publishe

    Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

    Get PDF
    Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the GWGW approximation within the framework of the FLAPW method, we study the quasi-particle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the \textit{sp}-electron based semiconductors such as Si and GaAs, in these systems the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2~eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the \emph{sp}-chemical element

    Edge singularities in high-energy spectra of gapped one-dimensional magnets in strong magnetic fields

    Get PDF
    We use the dynamical density matrix renormalization group technique to show that the high-energy part of the spectrum of a S=1 Haldane chain, placed in a strong external magnetic field HH exceeding the Haldane gap Δ\Delta, contains edge singularities, similar to those known to exist in the low-energy spectral response. It is demonstrated that in the frequency range ωΔ\omega\gtrsim \Delta the longitudinal (with respect to the applied field) dynamical structure factor is dominated by the power-law singularity S(q=π,ω)(ωω0)αS^{\parallel}(q=\pi,\omega)\propto(\omega-\omega_{0})^{-\alpha'}. We study the behavior of the high-energy edge exponent α\alpha' and the edge ω0\omega_{0} as functions of the magnetic field. The existence of edge singularities at high energies is directly related to the Tomonaga-Luttinger liquid character of the ground state at H>ΔH>\Delta and is expected to be a general feature of one-dimensional gapped spin systems in high magnetic fields.Comment: (v2) error in Eq.(11) correcte

    Killing spinors in supergravity with 4-fluxes

    Full text link
    We study the spinorial Killing equation of supergravity involving a torsion 3-form \T as well as a flux 4-form \F. In dimension seven, we construct explicit families of compact solutions out of 3-Sasakian geometries, nearly parallel \G_2-geometries and on the homogeneous Aloff-Wallach space. The constraint \F \cdot \Psi = 0 defines a non empty subfamily of solutions. We investigate the constraint \T \cdot \Psi = 0, too, and show that it singles out a very special choice of numerical parameters in the Killing equation, which can also be justified geometrically

    The G_2 sphere over a 4-manifold

    Full text link
    We present a construction of a canonical G_2 structure on the unit sphere tangent bundle S_M of any given orientable Riemannian 4-manifold M. Such structure is never geometric or 1-flat, but seems full of other possibilities. We start by the study of the most basic properties of our construction. The structure is co-calibrated if, and only if, M is an Einstein manifold. The fibres are always associative. In fact, the associated 3-form results from a linear combination of three other volume 3-forms, one of which is the volume of the fibres. We also give new examples of co-calibrated structures on well known spaces. We hope this contributes both to the knowledge of special geometries and to the study of 4-manifolds.Comment: 13 page

    Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides

    Get PDF
    We report on many-body corrections to one-electron energy spectra of bulk bismuth tellurohalides---materials that exhibit a giant Rashba-type spin splitting of the band-gap edge states. We show that the corrections obtained in the one-shot GWGW approximation noticeably modify the spin-orbit-induced spin splitting evaluated within density functional theory. We demonstrate that taking into account many-body effects is crucial to interpret the available experimental data.Comment: 6 pages, 1 figur

    Exact diagonalization solver for the extended dynamical mean-field theory

    Full text link
    We present an efficient exact diagonalization scheme for the extended dynamical mean-field theory and apply it to the extended Hubbard model on the square lattice with nonlocal charge-charge interactions. Our solver reproduces the phase diagram of this approximation with good accuracy. Details on the numerical treatment of the large Hilbert space of the auxiliary Holstein-Anderson impurity problem are provided. Benchmarks with a numerically exact strong-coupling continuous-time quantum-Monte Carlo solver show better convergence behavior of the exact diagonalization in the deep insulator. Special attention is given to possible effects due to the discretization of the bosonic bath. We discuss the quality of real axis spectra and address the question of screening in the Mott insulator within extended dynamical mean-field theory.Comment: 12 pages, 8 figure
    corecore